Copied to
clipboard

G = C23.D17order 272 = 24·17

The non-split extension by C23 of D17 acting via D17/C17=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C23.D17, C34.11D4, C22⋊Dic17, C22.7D34, (C2×C34)⋊4C4, C173(C22⋊C4), C34.16(C2×C4), (C2×Dic17)⋊2C2, C2.3(C17⋊D4), (C2×C34).7C22, (C22×C34).2C2, C2.5(C2×Dic17), SmallGroup(272,19)

Series: Derived Chief Lower central Upper central

C1C34 — C23.D17
C1C17C34C2×C34C2×Dic17 — C23.D17
C17C34 — C23.D17
C1C22C23

Generators and relations for C23.D17
 G = < a,b,c,d,e | a2=b2=c2=d17=1, e2=b, ab=ba, eae-1=ac=ca, ad=da, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede-1=d-1 >

2C2
2C2
2C22
2C22
34C4
34C4
2C34
2C34
17C2×C4
17C2×C4
2Dic17
2C2×C34
2C2×C34
2Dic17
17C22⋊C4

Smallest permutation representation of C23.D17
On 136 points
Generators in S136
(69 86)(70 87)(71 88)(72 89)(73 90)(74 91)(75 92)(76 93)(77 94)(78 95)(79 96)(80 97)(81 98)(82 99)(83 100)(84 101)(85 102)(103 120)(104 121)(105 122)(106 123)(107 124)(108 125)(109 126)(110 127)(111 128)(112 129)(113 130)(114 131)(115 132)(116 133)(117 134)(118 135)(119 136)
(1 40)(2 41)(3 42)(4 43)(5 44)(6 45)(7 46)(8 47)(9 48)(10 49)(11 50)(12 51)(13 35)(14 36)(15 37)(16 38)(17 39)(18 53)(19 54)(20 55)(21 56)(22 57)(23 58)(24 59)(25 60)(26 61)(27 62)(28 63)(29 64)(30 65)(31 66)(32 67)(33 68)(34 52)(69 103)(70 104)(71 105)(72 106)(73 107)(74 108)(75 109)(76 110)(77 111)(78 112)(79 113)(80 114)(81 115)(82 116)(83 117)(84 118)(85 119)(86 120)(87 121)(88 122)(89 123)(90 124)(91 125)(92 126)(93 127)(94 128)(95 129)(96 130)(97 131)(98 132)(99 133)(100 134)(101 135)(102 136)
(1 24)(2 25)(3 26)(4 27)(5 28)(6 29)(7 30)(8 31)(9 32)(10 33)(11 34)(12 18)(13 19)(14 20)(15 21)(16 22)(17 23)(35 54)(36 55)(37 56)(38 57)(39 58)(40 59)(41 60)(42 61)(43 62)(44 63)(45 64)(46 65)(47 66)(48 67)(49 68)(50 52)(51 53)(69 86)(70 87)(71 88)(72 89)(73 90)(74 91)(75 92)(76 93)(77 94)(78 95)(79 96)(80 97)(81 98)(82 99)(83 100)(84 101)(85 102)(103 120)(104 121)(105 122)(106 123)(107 124)(108 125)(109 126)(110 127)(111 128)(112 129)(113 130)(114 131)(115 132)(116 133)(117 134)(118 135)(119 136)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17)(18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34)(35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51)(52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68)(69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85)(86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102)(103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119)(120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136)
(1 119 40 85)(2 118 41 84)(3 117 42 83)(4 116 43 82)(5 115 44 81)(6 114 45 80)(7 113 46 79)(8 112 47 78)(9 111 48 77)(10 110 49 76)(11 109 50 75)(12 108 51 74)(13 107 35 73)(14 106 36 72)(15 105 37 71)(16 104 38 70)(17 103 39 69)(18 125 53 91)(19 124 54 90)(20 123 55 89)(21 122 56 88)(22 121 57 87)(23 120 58 86)(24 136 59 102)(25 135 60 101)(26 134 61 100)(27 133 62 99)(28 132 63 98)(29 131 64 97)(30 130 65 96)(31 129 66 95)(32 128 67 94)(33 127 68 93)(34 126 52 92)

G:=sub<Sym(136)| (69,86)(70,87)(71,88)(72,89)(73,90)(74,91)(75,92)(76,93)(77,94)(78,95)(79,96)(80,97)(81,98)(82,99)(83,100)(84,101)(85,102)(103,120)(104,121)(105,122)(106,123)(107,124)(108,125)(109,126)(110,127)(111,128)(112,129)(113,130)(114,131)(115,132)(116,133)(117,134)(118,135)(119,136), (1,40)(2,41)(3,42)(4,43)(5,44)(6,45)(7,46)(8,47)(9,48)(10,49)(11,50)(12,51)(13,35)(14,36)(15,37)(16,38)(17,39)(18,53)(19,54)(20,55)(21,56)(22,57)(23,58)(24,59)(25,60)(26,61)(27,62)(28,63)(29,64)(30,65)(31,66)(32,67)(33,68)(34,52)(69,103)(70,104)(71,105)(72,106)(73,107)(74,108)(75,109)(76,110)(77,111)(78,112)(79,113)(80,114)(81,115)(82,116)(83,117)(84,118)(85,119)(86,120)(87,121)(88,122)(89,123)(90,124)(91,125)(92,126)(93,127)(94,128)(95,129)(96,130)(97,131)(98,132)(99,133)(100,134)(101,135)(102,136), (1,24)(2,25)(3,26)(4,27)(5,28)(6,29)(7,30)(8,31)(9,32)(10,33)(11,34)(12,18)(13,19)(14,20)(15,21)(16,22)(17,23)(35,54)(36,55)(37,56)(38,57)(39,58)(40,59)(41,60)(42,61)(43,62)(44,63)(45,64)(46,65)(47,66)(48,67)(49,68)(50,52)(51,53)(69,86)(70,87)(71,88)(72,89)(73,90)(74,91)(75,92)(76,93)(77,94)(78,95)(79,96)(80,97)(81,98)(82,99)(83,100)(84,101)(85,102)(103,120)(104,121)(105,122)(106,123)(107,124)(108,125)(109,126)(110,127)(111,128)(112,129)(113,130)(114,131)(115,132)(116,133)(117,134)(118,135)(119,136), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17)(18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34)(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51)(52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68)(69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85)(86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102)(103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119)(120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136), (1,119,40,85)(2,118,41,84)(3,117,42,83)(4,116,43,82)(5,115,44,81)(6,114,45,80)(7,113,46,79)(8,112,47,78)(9,111,48,77)(10,110,49,76)(11,109,50,75)(12,108,51,74)(13,107,35,73)(14,106,36,72)(15,105,37,71)(16,104,38,70)(17,103,39,69)(18,125,53,91)(19,124,54,90)(20,123,55,89)(21,122,56,88)(22,121,57,87)(23,120,58,86)(24,136,59,102)(25,135,60,101)(26,134,61,100)(27,133,62,99)(28,132,63,98)(29,131,64,97)(30,130,65,96)(31,129,66,95)(32,128,67,94)(33,127,68,93)(34,126,52,92)>;

G:=Group( (69,86)(70,87)(71,88)(72,89)(73,90)(74,91)(75,92)(76,93)(77,94)(78,95)(79,96)(80,97)(81,98)(82,99)(83,100)(84,101)(85,102)(103,120)(104,121)(105,122)(106,123)(107,124)(108,125)(109,126)(110,127)(111,128)(112,129)(113,130)(114,131)(115,132)(116,133)(117,134)(118,135)(119,136), (1,40)(2,41)(3,42)(4,43)(5,44)(6,45)(7,46)(8,47)(9,48)(10,49)(11,50)(12,51)(13,35)(14,36)(15,37)(16,38)(17,39)(18,53)(19,54)(20,55)(21,56)(22,57)(23,58)(24,59)(25,60)(26,61)(27,62)(28,63)(29,64)(30,65)(31,66)(32,67)(33,68)(34,52)(69,103)(70,104)(71,105)(72,106)(73,107)(74,108)(75,109)(76,110)(77,111)(78,112)(79,113)(80,114)(81,115)(82,116)(83,117)(84,118)(85,119)(86,120)(87,121)(88,122)(89,123)(90,124)(91,125)(92,126)(93,127)(94,128)(95,129)(96,130)(97,131)(98,132)(99,133)(100,134)(101,135)(102,136), (1,24)(2,25)(3,26)(4,27)(5,28)(6,29)(7,30)(8,31)(9,32)(10,33)(11,34)(12,18)(13,19)(14,20)(15,21)(16,22)(17,23)(35,54)(36,55)(37,56)(38,57)(39,58)(40,59)(41,60)(42,61)(43,62)(44,63)(45,64)(46,65)(47,66)(48,67)(49,68)(50,52)(51,53)(69,86)(70,87)(71,88)(72,89)(73,90)(74,91)(75,92)(76,93)(77,94)(78,95)(79,96)(80,97)(81,98)(82,99)(83,100)(84,101)(85,102)(103,120)(104,121)(105,122)(106,123)(107,124)(108,125)(109,126)(110,127)(111,128)(112,129)(113,130)(114,131)(115,132)(116,133)(117,134)(118,135)(119,136), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17)(18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34)(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51)(52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68)(69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85)(86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102)(103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119)(120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136), (1,119,40,85)(2,118,41,84)(3,117,42,83)(4,116,43,82)(5,115,44,81)(6,114,45,80)(7,113,46,79)(8,112,47,78)(9,111,48,77)(10,110,49,76)(11,109,50,75)(12,108,51,74)(13,107,35,73)(14,106,36,72)(15,105,37,71)(16,104,38,70)(17,103,39,69)(18,125,53,91)(19,124,54,90)(20,123,55,89)(21,122,56,88)(22,121,57,87)(23,120,58,86)(24,136,59,102)(25,135,60,101)(26,134,61,100)(27,133,62,99)(28,132,63,98)(29,131,64,97)(30,130,65,96)(31,129,66,95)(32,128,67,94)(33,127,68,93)(34,126,52,92) );

G=PermutationGroup([[(69,86),(70,87),(71,88),(72,89),(73,90),(74,91),(75,92),(76,93),(77,94),(78,95),(79,96),(80,97),(81,98),(82,99),(83,100),(84,101),(85,102),(103,120),(104,121),(105,122),(106,123),(107,124),(108,125),(109,126),(110,127),(111,128),(112,129),(113,130),(114,131),(115,132),(116,133),(117,134),(118,135),(119,136)], [(1,40),(2,41),(3,42),(4,43),(5,44),(6,45),(7,46),(8,47),(9,48),(10,49),(11,50),(12,51),(13,35),(14,36),(15,37),(16,38),(17,39),(18,53),(19,54),(20,55),(21,56),(22,57),(23,58),(24,59),(25,60),(26,61),(27,62),(28,63),(29,64),(30,65),(31,66),(32,67),(33,68),(34,52),(69,103),(70,104),(71,105),(72,106),(73,107),(74,108),(75,109),(76,110),(77,111),(78,112),(79,113),(80,114),(81,115),(82,116),(83,117),(84,118),(85,119),(86,120),(87,121),(88,122),(89,123),(90,124),(91,125),(92,126),(93,127),(94,128),(95,129),(96,130),(97,131),(98,132),(99,133),(100,134),(101,135),(102,136)], [(1,24),(2,25),(3,26),(4,27),(5,28),(6,29),(7,30),(8,31),(9,32),(10,33),(11,34),(12,18),(13,19),(14,20),(15,21),(16,22),(17,23),(35,54),(36,55),(37,56),(38,57),(39,58),(40,59),(41,60),(42,61),(43,62),(44,63),(45,64),(46,65),(47,66),(48,67),(49,68),(50,52),(51,53),(69,86),(70,87),(71,88),(72,89),(73,90),(74,91),(75,92),(76,93),(77,94),(78,95),(79,96),(80,97),(81,98),(82,99),(83,100),(84,101),(85,102),(103,120),(104,121),(105,122),(106,123),(107,124),(108,125),(109,126),(110,127),(111,128),(112,129),(113,130),(114,131),(115,132),(116,133),(117,134),(118,135),(119,136)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17),(18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34),(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51),(52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68),(69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85),(86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102),(103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119),(120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136)], [(1,119,40,85),(2,118,41,84),(3,117,42,83),(4,116,43,82),(5,115,44,81),(6,114,45,80),(7,113,46,79),(8,112,47,78),(9,111,48,77),(10,110,49,76),(11,109,50,75),(12,108,51,74),(13,107,35,73),(14,106,36,72),(15,105,37,71),(16,104,38,70),(17,103,39,69),(18,125,53,91),(19,124,54,90),(20,123,55,89),(21,122,56,88),(22,121,57,87),(23,120,58,86),(24,136,59,102),(25,135,60,101),(26,134,61,100),(27,133,62,99),(28,132,63,98),(29,131,64,97),(30,130,65,96),(31,129,66,95),(32,128,67,94),(33,127,68,93),(34,126,52,92)]])

74 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D17A···17H34A···34BD
order122222444417···1734···34
size111122343434342···22···2

74 irreducible representations

dim111122222
type+++++-+
imageC1C2C2C4D4D17Dic17D34C17⋊D4
kernelC23.D17C2×Dic17C22×C34C2×C34C34C23C22C22C2
# reps12142816832

Matrix representation of C23.D17 in GL3(𝔽137) generated by

13600
010
07136
,
13600
010
001
,
100
01360
00136
,
100
0880
083123
,
3700
02313
0128114
G:=sub<GL(3,GF(137))| [136,0,0,0,1,7,0,0,136],[136,0,0,0,1,0,0,0,1],[1,0,0,0,136,0,0,0,136],[1,0,0,0,88,83,0,0,123],[37,0,0,0,23,128,0,13,114] >;

C23.D17 in GAP, Magma, Sage, TeX

C_2^3.D_{17}
% in TeX

G:=Group("C2^3.D17");
// GroupNames label

G:=SmallGroup(272,19);
// by ID

G=gap.SmallGroup(272,19);
# by ID

G:=PCGroup([5,-2,-2,-2,-2,-17,20,101,6404]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^17=1,e^2=b,a*b=b*a,e*a*e^-1=a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations

Export

Subgroup lattice of C23.D17 in TeX

׿
×
𝔽